Demo NADA Catalog
Data Catalog
  • Home
  • Catalog
  • Collections
  • Citations
  • How to?
  • Login
    Login
    Home / Central Data Catalog / WLD_2020_PFC_V01_M / variable [F1]
central

Predicting Food Crises 2020, Dataset for reproducing working paper results

Afghanistan, Burkina Faso, Chad...and 18 more, 2007 - 2020
Get Microdata
Reference ID
WLD_2020_PFC_v01_M
Producer(s)
Bo Pieter Johannes Andree, Andres Chamorro, Aart Kraay, Phoebe Spencer, Dieter Wang
Metadata
DDI/XML JSON
Created on
Sep 16, 2021
Last modified
Sep 16, 2021
Page views
3592
Downloads
117
  • Study Description
  • Data Dictionary
  • Downloads
  • Get Microdata
  • Data files
  • predicting_food_crises_data

Rainfall Estimates from Rain Gauge and Satellite Observations (CHIRPS) - Anomalies (rain_anom)

Data file: predicting_food_crises_data

Overview

Valid: 183596
Invalid: 0
Minimum: -42.511
Maximum: 80.804
Type: Continuous
Decimal: 0
Width: 9
Range: -42.5106506347656 - 80.8044204711914
Format: Numeric

Description

Definition
Anomalies are calculated by substracting the current monthly value from the long-term average for that month.
Source of information
CHIRPS Pentad, processed in Google Earth Engine). Cropland mask (GFSAD), pasture mask (FAO - FGGD)

Others

Notes
Frequency: Raw images (5-day) are aggregated to the monthly level using the average value. Monthly images are summarized to the district level using the average value.
Back to Catalog
Demo NADA Catalog

© Demo NADA Catalog, All Rights Reserved.